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Abstract
Synchronization in public transport can be modelled by means of Discrete Event
Systerns. Such a model can be used to determine how delays propagate, by means

of simulation. In this paper an analytical approach to obtain the propagation of
delays has been described.

Keywords

Delays, Propagation, Discrete Event System, Synchronization

Contents
1 Summary 2
2 Introduction 2

3 Discrete event systems and (max,+) algebra 3
3.1 A train network example . . . . . . ... oo 3
3.2 Thealgebra . . . ... oo 4

5
5

3.3 Back to the example
3.4 The critical circuit

4 Propagation of delays 6
A1 Simulation . . - o o e e e e e e e e e e e e e e e e e e e s 6
4.2 ADalysis . . . v v i e e e 6
4.3 A single delay 9
4.4 Maltiple delays
4.5 Buffer times . . . . . o o i e e e e e e e e e e 10

46 A performance Measure . . . . . .« «« o oo oo 12
5 Conclusions 12
Appendix A: Synchronization constraints 14



1 Summary

In public transport, modelling synchronization can be achieved by means of discrete
event systems. In such models the travel times between stations are given and, with
the aid of (max,+) algebra, the fastest possible timetable can be worked out (for
instance the hour-pattern of the Dutch railway system takes at least 53.4 minntes).
With this timetable we can then determine the propagation of delays. More pre-
cisely, we can calculate M;; which is the maximum delay at station j that does not
reach station 7. These values can also be calculated when considering buffer times.
Buffer times improve the reliability of the system and can also be used to create an
appropriate cycle time (60 minutes instead of 53.4 minutes).

Two examples of the propagation of a delay are shown using the Dutch railway
systemn as a model, In the first example the system has no buffer times and in the
second example all buffer times equal 6.6 minutes (which will result in a cycle time
of 60 minutes).

Finally, the usage of M as a performance measure is discussed.

2 Introduction

Public transport is very disturbance sensitive due to weather conditions, the num-
bers of passengers getting in and out, traffic jams, accidents etc. which leads to
many delays. As a consequence, travellers’ trips become longer and moreover, be-
cause people miss their connections and have to wait at cold and boring transfer
poirts, trips become less comfortable. Sometimes these connections can be main-
tained if trains or busses wait for each other. Such arrangements will be good for
some travellers (those who keep their connection) but bad for others (those who are
already waiting for the train or bus to depart). To keep passengers as satisfied as
possible such decision rules have to be optimized.

Optimizing decision rules in public transport is not easy. One has to know for
how many passengers the decision will be an advantage and for how many it will
be a disadvantage, and also, how these advantages and disadvantages should be
weighed up and whether or not a decision is at all feasible within the systern. Fur-
thermore, one not only needs knowledge of all these aspects at the time the decision
is made, but also shortly afterwards because delays propagate in time.

In this paper we are concerned with calculating the propagation of delays. One
way of calculating the propagation of delays is by doing simulations. However, this
method is time-consuming and it does not give any further insight into the prob-
len. We will therefore describe also an alternative calculation method, which is not
time-consuming and which does give insight into the matter. This method is based
on the theory of Discrete Event Systems (DES), a theory that has been used once
before, to model the Dutch railway system [4]. In this paper we will use the same
model of the Dutch railway system to give some examples.



3 Discrete event systems and (max,+) algebra

This section gives a brief introduction to the theory of discrete event systems and
(max,+) algebra. A more detailed description can be found in [1]. First we start
by giving a simple train network example.

3.1 A train network example

To explain the principles of discrete event systems, we shall consider an example of
a small train network (cf. [3]). This network consists of two main stations denoted
by marks 1 and 2, see Figure 1. At these main stations departing trains wait for

Figure 1: an example

arriving trains to give passengers the opportunity to change over. At the in-between
stations trains leave immediately after passengers have got in and out. Since these
in-between stations only affect the travelling times between the main stations they
will be omitted from the model.

Four trains, denoted by the arrows in Figure 1, pass through this network. Figure 1
also shows the travel times for each route.

At 2 certain moment, say t=0, trains will depart from stations 1 and 2. At station
1 the first train will arrive at t=3 and the second train will arrive at t=5. Because
these trains again wait for each other to depars, the next departure from station 1
will be at t=5. At station 2 both trains arrive at t=3 so these trains can therefore
depart immediately, at t=3. This principle leads to the timetable shown in Table 1.

departure 1st 2nd 3rd 4th 5th T
station 1 0 5 8 13 16
station2 0 3 8 11 16

Table 1: timetable 1

A more regular timetable can be obtained if the trains at station 1 depart for the
first time at t=1. This results in the timetable given in Table 2. According to this

departure 1st 2nd 3rd 4th 5th
station 1 1 5 9 13 17
station 2 0 4 8 12 16

Table 2: timetable 2

regular timetable trains leave from each station once in every 4 time units.



3.2 The algebra

The orevious section described synchronization by means of an example. This sec-
tion is concerned with the mathematical point of view. In the next section we will
show how the equations found in this section can be applied to the example.

Given a network of n nodes (i.e. stations) and connections, define:

z;(k} : moment of the k™ departure in node 1,

aj; : travelling time from node j to node z.

Note that in (max,+) algebra going from j to i is denoted by 7j, which is the other
way round from usual notation.
The following equations describe the fact that events have to wait for each other:

z1(k+1) = max{zi(k)+a11,...,2n(k) + ain}

zo(k +1) = max{zi(k)+ a21,...,zn(k) + a2, }

en(k+1) = max{zi(k)+an1,---, 20 (k) + ann} (1)
If no connection from node j to node i exists, we choose a;; = —oo. With the

aid of (max,+) algebra we can write (1) in matrix form. This algebra differs from
conventional algebra because of the following:

e besides reals we use the number —oo; IRy = IR U —o0,
e we replace addition by taking the maximum which will be denoted as &,
¢ we replace multiplication by addition which will be denoted as ®.

Matrix multiplication in (max,+) algebra is defined as:

(A@ B)ij = @Uik ®br; = (max (Ask + Bej)

Here A and B have sizes m X r respectively 7 x n. Notice that this definition is sim-
ilar to matrix multiplication in conventional algebra where (AB);; = S5 _; @ik - bxj.

In (max,+) algebra we can write equations (1) as:
z(k+1) = Ax z(k) (2)

The first set of events (the moments when the trains depart for the first time)
will be denoted by z(0). This vector, together with equation (2), determines the
evolution of the following events. The main problem is to choose 2(0) so that a
regular timetable appears, i.e. z(k +1) = A® z(k) for some A and for all £ € IN.
For this purpose we have to solve:

AQv=AQv (3)

As In conventional algebra ) is called an eigenvalue and v is called an eigenvector
of matrix A.



3.3 Back to the example

Let us show how the mathematical framework of the previous section can be ap-
plied to the example network of Section 3.1. In the train network example train
departures match the following equations:

z1(k+1) max{xy(k) + 3, z2(k) + 5}
zo(k+1) = max{z(k)+ 3,23(k) + 3}

These equations can be written down in (max,--} algebra as:

z(k+1) = A®z(k), where 4 = [2 2]

Suppose that each train departs for the first time at ¢ = 0, which is denoted as
£(0) = [0, 0], then, using equation (2) recursively, this will give:

(1) = [ 2},17(2): [Z},az(Ei): [ ﬁ]

This corresponds to Table 1. A regular timetable would be established if trains at
station 1 departed for the first time at t=1. Indeed 2(0) = [1,0]" happens to be an
eigenvector of A with eigenvalue A = 4

EHRBEHERH

Following this starting vector z(0) we obtain the same results as in Table 2. In
general, it is not difficult to verify whether a given vector such as [1,0] is an
eigenvector or not. An eigenvector can be found by using the so-called power
algorithm (cf. [2}).

3.4 The critical circuit

The eigenvalue of a system is directly related to the so-called critical circuit. A
circuit is defined as a subset of nodes which is such that if we start in one of
these nodes it will be possible to return to the same node by visiting the remaining
nodes exactly once. The train network example consists of three circuits: a left, a
middle and a right circuit (i.e. subsets {1}, {1,2} and {2}). The total travel time
along a given circuit divided by the number of trains on the same circuit is called
the circuit mean. According to a theorem in (max,+) algebra. the eigenvalue of a
system equals the maximum circuit mean. In the example used here we have circuit
means of respectively 3/1, (5+3)/2 and 3/1. The maximum circuit mean is thus 4.
This is indeed the eigenvalue of the train network. Circuits that have a maximum
circuit mean are called critical circuits.



4 Propagation of delays

In a railway system trains wait for each other. In what follows we assume that
the connections remain the same, in spite of delays. Then the departure time of a
train is the maximum of the timetable departure time and the arrival times of the
preceding trains. As a consequence delays will propagate.

We will only consider delays that occur at nodes (stations). It should be noted that
a delay at one node may stand for a delay of several trains. If we are dealing with
a delay of a particular train, we first have to calculate the delay of the succeeding
node reached by that train.

In this section we will assume that the network is strongly connected, i.e. it is
possible to reach any node from any (other) node.

4.1 Simulation

Consider a timetable determined by an eigenvector v of matrix A:
x(k’) = Ak @ v

Suppose at k=0 there are some delays d(0) which result in a vector of disturbed
moments of departure Z(0) = z(0) +d(0). Because all connections remain the same,
the “ime-evolution of #(0) can be found by applying matrix A and timetable z:

k+ 1) =Az(k) @ z(k+1)
The difference between 7 and z determines the propagation of delay d(0):
d(k) = (k) — z(k)

This way of calculating the propagation of delays is thus merily a matter of sim-
ulation. Also when matrix A is replaced by random matrices A(k), i.e. the travel
times are considered as stochastic variables, this way of simulation can be used.

4.2 Analysis

In this section we question which nodes will be disturbed by a particular delay. It
is known that delays on the critical circuit never die out, since there is no slack
between critical nodes (i.e. nodes on the critical circuit) to cath up. Moreover,
every node in the (strongly connected) network will eventually be disturbed by any
delay on the critical circuit (if the critical circuit is unique, as we will prove later).
This has been illustrated in Figure 2, where the thick arrows indicate the critical
circuit. On the other hand, a delay located off the critical circuit could die out
before it has reached the critical circuit, but only if it is small enough, cf. Figure 3.
Herce if a delay in a particular node is large enough, this delay or a part of it reaches
the critical circuit and thereby reaches all other nodes. Considering two arbitrary
nodes we question how large a delay in one of these nodes must be to affect the
other node. This leads us to the following definition:

Definition 1 M;; is the mazimum delay at node j that does not reach node 1.

The values M;; can be obtained using the following lemma, but first we introduce
somie notations:

At=Aa A’ 433 ..
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Figure 2: a delay on the critical circuit
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Figure 3: a delay off the critical circuit

The matrix A% is also refered as the shortest path matriz. Furthermore we will
subtrackt the eigenvalue from each element of A4 which will be notated by

(Ar);; = aij = A
Combining the above definitions gives

Lemma 1 Let A be an irreducible matriz responding the travel times in a railway
network with eigenvector v and eigenvalue A, then M;; = v; — v; — (Ai’)ij.

Proof. Consider a path p from node j to node ¢ (such a path exists because the
graph is assumed to be strongly connected). Renumber the nodes of this path as
1,...,n (node j becomes node 1 and node ¢ becomes node n).

Each pair of successive nodes on this path have slack, i.e. the departure time at
the second node minus the arrival time of a train coming from the first node. Let
us calculate the total slack on the whole path:

total slack of p = (v2+A)— (v1 +an)+
(1)3 + )\) — (vg + Clgz) =+
.. +

(Un +)\) - (’Un_l +ann—l)
= Up—v1+A—dn+A—aznm+c+ A= Gunoy



Let P be the set of all possible paths from node j to node 7. The maximum delay in

node j that does not reach node i equals the slack between node j and i, minimized
over P. Thus:

My = minQo—v+ D, (A= aw)
(k.Lyep

= v,——vj—i—;réi}rjl Z(;\—-akl)
(kl)ep

The final equality is founded on the shortest path algorithm, cf. [1].

O

Example 1 Consider a network as drawn together with the corresponding A-matriz
in Figure 4. One can easily validate that v = [0,0, %}’ is an eigenvector with eigen-
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Figure 4: a three stations example
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value A = 24 and that the critical circuit is {1,3}. Calculating At = Ao Al @
A‘;’\ b --- glves:

0 o-1 -
S
3 -3 0

Furthermore, Lemma 1 gives:
01 0
M=| 010
01 90

In Yixample 1 the columns of M belonging to the nodes of the critical circuit turn
out to be zero-columns. 'I'his means that any delay on the critical circuit eventually
disturbs every node. The fact that M;; = 0 whenever both 7 and j are nodes in the
critical circuit is obvious: the critical circuit has no slack. The fact that M;; = 0
also holds if only J is a critical node is due to the fact that the critical circuit is
unique as is claimed by the following lemma:

Lemma 2 If the critical circuit is unique and j is a node of the critical circuit,
then Mi; = 0 for every node t.



To proof this lemma, we use the notion of triggering. We say that node i is triggered
by node j if there exists a direct connection fror j to ¢ and the last train for which
node i has to wait is the train comming from node j, i.e. there is no slack between
node j and node ¢.

Proof. If both 7 and j belong to the critical circuit, M;; = 0 is obvious. Let
node i be a noncritical node, i.e. a node off the critical circuit. Consider the set S
of all nodes that have a path to node ¢ without slack. Node i is triggered by at least
one node, which is thus in S. This node is then triggered by another node which is
also in S, and so on. Because the number of nodes in the graph is finite, the set §
must, contain a cireuit. This circuit has no slack, so it is a critical circuit. Moreover,
it is the critical circuit because the critical circuit was assumed to be unique. So,
a path exists from the critical circuit to node i without slack and thus M;; = 0
whenever j is a critical node.

O

Example 2 shows that this lemma does not hold if the critical circuit is not unique.

Example 2 Consider the following A-matriz of travelling times:

e 2 € €
2 ¢ ¢ 1
A= 1 ¢ ¢ 2
e ¢ 2 ¢

This matriz has an eigenvector v = [0,0,0,0) and eigenvalue A = 2. There are two
eritical circuits: {1,2} and {3,4}. Lemma 1 gives:

——O DO

0
0
1
1

o O = e
L)

Although all nodes belong to a critical circuit, M has non-zero elements. This shows
that the uniqueness of the critical circuit in Lemma 2 is a necessary condition.

4.3 A single delay

Let D; be a single delay in node j. What immediately follows from matrix M is
which nodes will be disturbed due to this delay and the maximum delay these nodes
will get:

nodes disturbed by delay D; : {iIM;; < Dy}
maximum delay of node i due to D; : max(D; — M;;,0)

In Example 3 we will illustrate this by using the Dutch railway network.

Example 3 Consider the A-matriz of the Dutch railway system, as built by Subiono
in [4]. Appendiz A, borrowed from [{], is a list of variables and departure con-
straints. Assume that an initial delay of 5 minutes occurs at node 2 (Utrecht). By
means of simulation we obtain the propagation of this delay shown in Table 3. By
the 8th time step all trains will be departing on time again. Table § also shows the
non-zero elements of max(5 — M;2,0). These values are ezactly the same as those
obtained from simulation, although the information on the moments at which the
delays occur is lost.



simulation max(D; — M;;,0)
time step
0o 1 2 3 4 i 6 7

1 2 |4 0
: 3 5 5
d 4 1 3
i 7 44 Iy
s 13 5 5
t 14 4-4 44
u 79 5 5
r 99 4.4 4.4
b 101 44 4.4
e 102 44 .
d 108 44 i
118 44 44

n 120 44 i
o 121 4.4 44
d 180 § 5
e 195 5 5
s 196 5 5
197 5 5

Table 3: propagation of a 5 minutes delay at node 2 (Utrecht)

4.4 Multiple delays

When dealing with multiple initial delays, the maximum delay a node receives equals
the maximum delay that node would receive from each single delay on its own. Let
D be a vector of initial delays. The maximum delay that node i receives equals:

max <maX{Dj - M‘J} s O> .
2

4.5 Buffer times

In order to increase the reliability of the railway system, buffer times are added to
catch up with delays. Let B be the matrix of buffer times, i.e. B;; is the buffer
time of a train going from j to i. A new timetable can be produced according to
the new model A:

A=A+ B
here, + means the conventional addition of matrices. The new timetable and cycle
time follows from the eigenvector and eigenvalue of A:
Agi=A@b

In practice, we want X to be a round number (60 minutes in the Dutch railway
system). This can be achieved by choosing B appropriate, for instance by choosing
B;; = A — X for each pair ¢ and j. It is easy to verify that when all buffertimes are
equal, v equals v.

10



Again, we want to know what is the maximum delay in node j that does not
reach node i. In the new model the slack between two successive nodes equals
(g -+ A) — (%1 + az1), so we have:

ity = % - 7 — (AF) (4)

\ 1j

Notice that the lacking of the tilde above A in (4) is not a misprint. On the contrary,
it is essential that the buffertimes disappear in the synchronization constraints when
calculating the propagation of delays.

Example 4 Consider the network given in Ezample 1 and add buffer times of%
to all the travel times:

~ e 13 2%

3'2- 2% £

Then A =3, 5 = v =[0,0,%]" and, according to ({),
i 12 %
M = 1 2 3
;L1

Example 5 Consider again the Dutch railway system, as in Ezample 3. The cycle
time of the model without buffer times equals 53.4 minutes (cf. [4]). However
the Dutch railway company has a schedule on an hourly basis and therefore uses
a cycle time of 60 minutes. We therefore modify the model of Subiono by adding
6.6 minutes buffer time to all the iravel times. An initial delay of § minutes at
node 2 will immediately be absorbed by the 6.6 minutes buffer time. Table 4 gives

simulation max(D; — M;;,0)
teme step
0 1 2 3 4
2 130 0
d 3 23.4 23.4
7 4 16.8 16.8
s 5 0.2 0.2
t 7 9.6 9.6
u 9 15.2 15.2
r 10 6.2 6.2
b 13 28.4 23.4
¢ 14 16.2 16.2
d 79 10.2 10.2
101 9.6 9.6
n 102 3 3
o 180 28.4 23.4
d 195 5.2  10.2 10.2
e 196 3.6 3.6
s 197 16.8 16.8

Table 4: propagation of 30 minutes delay at node 2 (Utrecht) with buffer times of
6.6 minutes

the propagation of 30 minutes at node 2. This delay dies ouf after 5 time steps
have been taken. Again, the results obtained from simulation and from using the
M -matriz are shown.

11



4.6 A performance measure

Matrix M measures the propagation of delays and could be used as a performance
measure. In fact, matrix M represents the trade-off between robustness and syn-
chronization. If M is low, the degree of propagation is high, which will result in poor
rohustness but good synchronization. If M is high, then the degree of propagation
is low, robustness will be good and synchronization will be poor (cf. Table 5).

robustness synchronization
high M good bad
low M bad good

Table 5: matrix M as a performance measure

For the purpose of performance measurement an ordering of matrices M is required.
One way of ordering would be by considering the mean of M;;. This ordering has
the advantage of being independent of the eigenvector v, since:

— + — +

> M= 3 (w - - (4D)y) = - 2 (4h)y,
] iJ 17

A disadvantage of the mean is its sensitivity to peaks. Peaks of M;; will occur espe-

clally on connections between minor stations that lie far away form each other. Since

these connections are less important but seriously affect the ordering, a weighted
meaa should be considered.

5 Conclusions

In this paper we consider two means of calculating the propagation of delays; by
simulations and by the matrix M.

A disadvantage of using matrix M is that it does not give all the information
which can be obtained from simulation. The information on the moments at which

delays occur will be lost and if several delays occur at one node, only the largest
one will be given.

The advantages of using M instead of simulation are, firstly that M can be cal-
culated in advance. Then the propagation immediately follows when initial delays
are given, By contrast, simulations must be done over and over again whenever ini-
tial delays are given. Secondly, using matrix M gives more insight into the matter
than using simulations; it gives the slack between each pair of nodes. Finally, mat-
rix M could be used as a performance measure. [t represents the trade-off between
robustness and synchronization.
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Appendix A: Synchronization

This appendix is borrowed from [4].

constraints

(

line

var.

departure from

destination

[ departure constraints

T ETY Den Haag CS Enschede T + 38, zg7 + 51, T108 + 12, 2141 + 20

1 =g Utrecht Enschede 1 +40,x¢ + 72, 2155 + 66, T165 + 59, Teo + 51
1 E Deventer Enschede zg 4 50

1 T4 Enschede Den Haag CS, Rotterdam CS3S x3 + 41, x3195 + 10

1 Ty Deventer Den Haag CS, Rotterdam CS x4 +41,z185 + 51

1 zg Utrecht Den Haag CS, Rotterdam CS$ ry + 53, g + 39,77 + 40,231 + 61, T152 + 36

2 z7 Den Haag CS Leeuwarden, Groningen x14 + 38,105 + 12

2 Tg Rotterdam CS Leeuwarden, Groningen T14 + 36,55 + 37, x5z + 42, Tg7 + 31, v96 + 45
2 S Amersfaart Lecuwarden, Groningen Ty 455,28 + 54,39 + 15,25 + 37, %15 + 30, T16 + 36, T145 + 13
2 z10 Zwolle Leeuwarden, Groningen rg + 35, xmy + 20, 2190 + 23

2 z11 Leeuwarden Den Haag CS, Rotterdam CS | x)g + 54, x2g5 + 37, 2299 + 51

2 r1o Groningen Den Haag CS, Rotterdam CS z10 + 58, T2p] + 41, T203 + 49
2 £13 Amersfoort Den Haag CS, Rotterdam CS | r1o 493,211 + 90,215 + 30, ©16 + 36, x2 + 60, x17¢ + 3¢
2 )4 Utrecht Den Haag C3, Rotterdam CS | =13 + 16,215 + 30,215 + 36, 233 + 30

3 x5 Amsterdam CS Enschede x5 + 30,247 + 28,27 + 15, 284 + 16

3 g Schiphol Enschede To1 + 35,6} + 29, x6p + 857, T1p4 + 19, 2139 + 84,2137 + 9
3 ey Amersfoort Enschede 215 + 30,216 + 36,27 + 55, zg + 54

3 z)g Hengelo Enschede 17 + 68,151 + 61

3 cig Enschede Amsterdam CS, Schiphol =18 +12

3 90 Almelo Amsterdam CS, Schipbol zy1g +17

3 a1 Amersfoort Amsterdam CS, Schiphol Zog + 60,12 + 93,311 + 90, £7 + 55, g + 54
4 zog Amsterdam CS Leeuwarden, Groningen x5 + 30, T3] + 33, 149 + 28, 547 + 62, T119 + 38
4 o3 Schiphol Lecuwarden, Groningen T3y + 35, m57 + 26, 55 + 14, T1p7 + 19, 7151 + 4
4 Tog Zwolle Leeuwarden, Groningen T3o 4 66,203 + 72, 330 + 96, 73 + 50, 143 + 49
4 Tog Meppel Leeuwarden, Groningen zo4 + 15
4 z2g Leeuwarden Amsterdam CS, Schiphal xog 4 48, r192 + 52, x394 + 48
4 xo7 Groningen Amsterdam CS, Schiphol x5 + 50, =197 + 53, 2193 + 50, T199 + 44

4 Tog Zwolle Amsterdam CS, Schiphol z3g + 64,27 + 66, x73 + 50

4 zag Amersfoort Amsterdam CS, Schiphol z2g + 36, x5 + 37

5 z3g0 Den Heider Nijmegen x35 + 30
5 x31 Heecrhugowaard Nijmegen z30 + 36

5 T30 Utrecht Nijmegen T3] + 61,109 + 58, x35 + 40, 26} + 33,2151 + 38
5 x33 Ede-Wageningen Den Helder x35 +67,x112 +49, 175 + 34

5 T34 Amsterdam CS Den Helder 33 + 51,797 4+ 30, xgy + 16, x151 + 17
s T35 Heerbugowaard Den Helder z34 + 39
6 x3g Den Helder Arnhem x4) + 69,2124 + 53
3 x3y Amsterdam CS Arnbem ra3g + 69, %01 + 30, x5y + 41,2118 + 13, £144 + 12
6 z3g Ede-Wageningen Arnhem xay 4+ 50,75 + 75, T3 + 53, T175 + 34

6 z3g Arnhem Den Helder x38 + 12, 2179 + 68
6 40 Utrecht Den Helder r39 + 33, x5 + 53,3152 + 36

6 x 41 Amsterdam CS Den Helder x40 + 28, xgg + 35, r133 + 52, T135 + €5, T135 + 25
7 42 Amsterdam CS$ Maastricht 47 + 62, x2) + 30, xgg + 36, Tg5 + 45

7 S ’s-Hertogenbosch Maastricht x42 + 56, x148 + 44
7 44 Sittard Maastricht z43 + 70,290 + 71, w111 + 36
7 LTS Sittard Haarlem 44 + 31
7 46 Eindhoven Haarlem 45 + 46, o1 + 42

7 z47 Utrecht Haarlem z46 + 50, 7152 + 36,7777 + 39

8 T4g Haarlem Eindhoven 5] + 17, xg3 + 46
8 T4g Utrecht Eindhoven T48 + 45, 7163 + 12

8 zgq 's-Hertogenbosch Haarlem z49 + 71

8 ETHY Amsterdam CS Haarlem x50 + B7, w21 + 30, r148 + 44, x160 + 40, 2368 + 50
9 z52 Amsterdam CS Viisingen g7y + 41, 2180 + 38
9 x53 Den Haag HS Vlisingen zgo + 40, xg5 + 59, £1g3 + 36

9 x5y Roosendaal Vliisingen rg3 + 52

9 zyg Viisingen Amsterdam CS xgq + 52

9 *56 Roosendaal Amsterdam C3 x55 + 51
s E Den Haag HS Amsterdam CS z56 + 53, g + 52

10 rsg Schiphol Roosendaal xg1 + 29,291 + 35

10 x50 Dordrecht Roosendaal 258 + 57, 2g7 + 85, T10g + 46

10 zgn Dordrecht Amsterdam CS z59 + 44, o776 + 45, 2172 + 46

10 T61 Schiphol Amsterdam CS zgo + 57, To1 + 35, x93 + 58, %164 1+ 42

11 gy Den Haag HS Heerlen zg7 + 54, Tgo + 407,135 +58

11 xg3 Breda Heerlen ze2 + 48, 53 + 48, x7g + 41

11 g4 Eindhoven Heerlen rg3 + 36, 157 + 30

11 Tes Heerlen Den Haag CS zgq + 66

11 g6 Roermond Den Haag CS g5 + 32, £111 + 20

11 zg7 Breda Den Haag CS zgp + 71

12 zgg Zwolle Roosendaal x73 + 96, x79 + 107, xo34 + 17

12 gy Arnhem Roosendaal Tgg + 96, xr1g7 + 60, x93 + 72

12 x70 Tilburg Roosendaal zgg + 59,242 + 71

12 z7y Roasendaal Zwolle z70 + 42, r53 + 52, xgg + 51

12 7y ‘s-Hertogenbosch Zwolle =7y + 50

12 z73 Arnhem Zwolle z79 + 43

13 x4 Deventer Roosendaal z79 + 39, x1g87 -+ 67,190 + 42

13 LR Nijmegen Roosendaal z74 + 48, 110 4 27

13 z76 Breda Roosendaal o754+ 66, 346 + 57, x5 + 71

13 Ty Breda Zwolle T76 + 41, Tgg + 48

13 x78 ’s-Hertogenbosch Zwolle z77 + 33

13 79 Deventer Zwolle 78 + 78,2107 + 52

14 280 Amsterdam CS Breda zgq + 16, T35 4 69, 227 + 30, 146 + 15

14 zg1 Rotterdam CS Breda cgg + 61,x52 + 63, x15g + 23

14 zgo Breda Amsterdam CS xg) + 46,75 + 66,173 + 73

14 Tg3 Rotterdam CS Amsterdam CS zgo + 47

14 x84 Haarlem Amsterdam CS xg3 + 46, x97 + 45

15 Tgy Amsterdam CS CS | Dordrecht xgg + 35, x47 + 28,231 + 33,2115 + 39553 + 15
15 Tge Leiden Dordrecht rgs + 34

15 g7 Dordrecht Amsterdam CS xge + 50

s zgg Leiden Amsterdam CS Tg7 + 52

16 zgg Dordrecht Venlo x93 + 34

16 zgo Tilburg Venlo zgg + 35

16 zg1 Venlo Rotterdam CS rgp + 64,2111 + 41

16 zgg Eindhoven Rotterdam CS rgy + 42, x45 + 46

16 93 Dordrecht Rotterdam C3 z97 + 57

17 P9 Hoorn Rotterdam CS rgg + 50, x3p + 44, T1)4 + 27

7 Tgy Alkmaar Rotterdam CS r94 + 25,730 + 36,2321 +15

17 zgs Leiden Rotterdam CS oy + 49, x5z + 30,7119 + 44

T r97 Rotterdam CS Hoorn xrge + 45, x5 + 36, xgg + 35

17 rgg Haarlem Hoorn roy + 66, x5y + 63

18 o Heerhugowaard Rotterdam CS 103 + 66

18 €100 Leiden Rotterdam CS =99 + 59,2558 + 16,7561 +13

18 101 Rotterdam CS Hoorn T1go + 45, x14 + 36

18 192 | Den Haag HS Hoorn z1g1 + 25

18 193 Haarlem Hoorn 10z + 41
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line | var. | departure from [ destination | departure constraints

19 Typ4 Amsterdam CS Den Haag CS T1g6 + 37,227 + 30

19 Ti05 Leiden Den Haag CS T104 + 37, Tgg + 34, T164 + 26

19 T106 Leiden Amsterdam CS xy105 + 25,87 + 52

20 107 Amsterdam CS Den Haag CS Tipe + 19, Tog + 30, zy53 + 15

20 zi08 Leiden Den Haag CS r1g7 + 37, #g5 + 34, x150 + 22

20 T1p9 Schiphol Amsterdam CS z108 + 43

21 110 Venray Roermond zl1p + 54,7112 + 42

21 £111 Venlo Roermond xyi0 + 16,259 + 16

21 ©112 Venray Nijmegen x111 + 56,264 + 68, x45 + 50

22 x113 Amsterdam CS Enkhuizen r115 + 39, %29 + 30,2109 + 19, 2357 + 81
22 114 Zaandam Enkhuizen x113 +12,%125 + 30

22 z115 Hoorn Amsterdam CS zy114 + 74

23 xy18 Hoorn Enkhuizen ry18 4+ 52, £gg + 84,2131 + 56

23 x117 Enkhuizen Amsterdam CS z116 + 23

23 x118 Zaandam Amsterdam CS xy117 + 50,2303 + 790

24 xy19 Uitgeest Amsterdam CS zy21 + 29, %Tge + 24,7127 + 56

24 xy29 Haarlem Atkmaar 2319 + 52, x302 + 41

24 2] Uitgeest Alkmaar zy1g0 + 23

25 X122 Uitgeest Amsterdam CS xy24 + 29,239 + 50, xgq + 33

25 z123 Amsterdam ©S Alkmaar xz190 + 38, %33 + 39

25 x124 Uitgeest Alkmaar xy23 + 37

26 T125 Alkmaar Utrecht x3128 + 15, %39 + 36

26 T126 Amsterdam CS Utrecht xy38 + 42

26 2107 Utrecht Alkmaar z126 + 28

26 z128 Uitgeest Alkmaar z127 + 56,7115 + 43

27 Ty29 Alkmaar Utrecht x132 + 32, r35 + 36

27 z130 Zaandam Utrecht xy129 +30,%12) + 45

27 131 Utrecht Alkmaar z130 + 40

27 132 Zaandam Alkmaar 2131 +29,72115 + 12,7117 + 80, 72; +41
28 133 Lelystad Centrum | Den Haag CS x136 + 36

28 i34 Duivendrecht Den Haag CS x133 +38,z3] + 43

28 135 Den Haag CS Lelystad Centrum z134 + 55

28 T138 Duivendrecht Lelystad Centrum w135 + 53, x5 + 50

29 r137 Schiphol Hoofddorp x3139 + 84,=x31 + 56, 233 + 52

29 r3138 Schiphol Lelystad Centrum z137 + 9,221 + 35, v1p8 + 43

29 <139 Weesp Lelystad Centrum z138 + 23,3147 + 16

30 7140 Amersfoort Den Haag CS xy43 + 13,708 + 36

30 £1431 Leiden Den Haag CS 140 + 69,737 + 45, x40 + 51

30 T142 Leiden Amersfoort x141 + 40, 260 + 41

30 143 Hilversum Amersfoort 142 + 57,2147 + 32

31 144 Weesp Amsterdam CS xy45 + 37, 720 + 84, 712 4+ 117, 731 + 124, 2133 + 28
31 143 Hilversum Amersfoort z144 + 36

32 T146 Weesp Amsterdam CS £148 + 52, %139 + 62

32 T147 Amsterdam CS Utrecht ry46 + 15,85 +16

32 148 Hilversum Utrecht T147 + 32

33 149 Utrecht Hoofddorp z152 + 36, 250 + 29, T1gp + 12

33 Tisn Weesp Hoofddorp r149 + 36, 154 + 62

33 1851 Hoofddorp Utrecht Ti150 + 27, 252 + 19

33 152 Weesp Utrecht T151 + 27. 2133 + 28, w153 + 31

34 153 Weesp Amsterdam CS ri5q + 62, T145 + 36

34 T154 Weesp Lelystad Centrum z153 + 31, r15] + 27, x40 + 44

35 . Weesp Amsterdam CS z18s + 54, 2140 + 24

35 156 Weesp Lelystad Centrum rigs + 24, T142 + 44

38 rg7 Amsterdam CS Rotterdam CS zy59 + 41,2155 + 12, 233 + 33, ry39 + 38
36 rysg Gouda Rotterdam CS ris7 + 51, 3¢ + 19,2163 + 35

36 TyEg Woerden Amsterdam CS rixs + 58, x1gn + 24

37 160 Woerden Utrecht r161 + 41, x158 + 58, T108 + 53

37 Ii61 Alphen a/d Rijn Leiden zy160 + 37, 148 + 44, o4 + 43, 162 + 39
38 T162 Alphen a/d Rijn (Gouda, Alphen afd Rijn r1g2 + 39, Ty1g1 + 26, Tg + 39,157 + 71
a9 Tye3 Woerden Utrecht T1e4 + 54, 2157 + 40, Tgg + 62, g7 + 80, x397 + 65
39 EIp Waerden Leiden ri1e3 + 24, T15g + 58, T13p + 52

40 Ti85 Gouda Alphen afd Rijn, Gouda g5 + 39,33 + 20,219 + 30, T34 + 58
41 T1g6 Utrecht Eindhoven rig8 + 22, T4 + 28

a1 Tyg7 's-Hertogenbosch Eindhoven rige + 37, €174 + 65

41 Tiss Geldermalsen Utrecht rygy + 76, 245 + 92, T 174 + 48

42 r169 ’s-Hertogeubusch Eindhoven 217y + 7€

42 z170 Eindhoven ' Utreckt z169 + 30, xgg + 325

42 171 ’s-Hertogenbosch Utrecht Ty7n + 29, Teg + 44

43 xy72 Dordrecht Gorinchem, Dordrecht Tipn 4+ 46, Tgg + 57, T7g + 44

44 T173 Geldermalsen Dordrecht zy174 + 48,2177 + 17

a4 174 Dordrecht Geldermalsen x173 + 51, rg53 + 31, T5p + 22

45 vy Amersfoort Ede-Wageningen ry76 + 34, x7 + 85,28 + 54, x12 + 93,711 + 90,20 + €0
45 zi76 Ede-Wageningen Amersfoort zy75 + 34,235 + 22, 237 + 50

46 377 Aruhewm Winterswijk my79 + 68, x3z + 33, Toy + 33, xpy + 44
46 x178 Winterswijk Arohem zy77 + 66, x182 + 38

46 179 — — 178

47 180 Apeldoorn Winterswijk zy1go + 17,72 + 39

47 x181 Zutphen Winterswijk Tygo + 18, Tgg + 35,2197 + 39

a7 z182 Zutphen Apeldoorn z181 + 67

59 183 Stavoren Leeuwarden 08 + 49

48 Tig4 Almelo Mariénberg r185 + 27,219 +17

48 x185 Mariinberg Almelo ryg4 + 25,180 + 34, Ty00 + 45

49 Tigs Zwolle Emmen z1g7 + 48, 279 + 20,29 + 35,215 + 57, x1] + 84
49 z187 Emmen Zwolle z186 + 51

50 T188 Mariénberg Ewmmen Z1en + 45, T1g4 + 25, 99 + 88, zp3 + 94, Tog + 86, To7 + 88
50 z189 Emmen Zwolle xy148 + 34

50 x19p Mariénberg Zwolle z1s9 + 34, v184 + 25

51 X191 Leeuwarden Groningen r191 + 49, x10 + 58, x2p1 + 41, 203 + 49
51 Ty1g2 Gromningen Leeuwarden rygo + 50,2309 + 54, xop5 + 37

52 z193 Leeuwarden Groningen z194 + 53,19 + 58,2201 + 41, To03 + 49
52 r194 Gromingen Lecuwarden x193 + 48, x25 + 46, x507 + 37

53 2195 Hengelo Enschede Ty97 + 76, 273 + 58,374 + 49, z180 + 55
53 T19g Enschede Zutphen 195 + 10

53 107 Hengelo Zutphen 106 + 10, 23 + 33

54 T108 Groningen Roodeschool x199 + 44,2193 + 50

54 z199 Roodeschool Groningen xT198 + 43

55 Z200 Groningen 1 x201 + 41, 25 + 50, 7393 + 50

55 z201 Delfzeil Groningen zo00 + 39

56 T202 Groningen Nicuweschans Zap3 + 49, 19y + 53, %1 + 58

56 X203 Nieuweschans Groningen z202 + 49

57 204 Leeuwarden Harlingen Haven 305 + 37, £192 + 52, T30 + 54, x209 + 51
ES z208 Harlingen Leeuwarden x204 + 31

38 zopg | Leeuwarden Harlingen Haven 2507 + 37, 194 + 48, 25 + 46

58 z907 Harlingen Haven Leeuwarden Tope + 30

59 208 Lecuwarden Stavoren x183 + 51,2005 + 37, 2192 + 52,739 + 54
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